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Abstract

Previous studies that quantify the relationship between homeless rates and features of a
community typically assume a global linear relationship. This linear model assumption pre-
cludes the possibility of inflection points in homeless rates — thresholds in quantifiable metrics
of a community which, once breached, are associated with large increases in homelessness. In
this paper, we identify points of structural change in the relationship between homeless rates
and community-level measures of housing affordability and extreme poverty. We develop a
Dirichlet process mixture model that allows clusters of communities with similar features to
exhibit common patterns of variation in homeless rates. A main finding of the study is that
the expected homeless rate in a community increases sharply once median rental costs exceed
32% of median income, providing empirical evidence for the widely used definition of a housing
cost burden at 30% of income. The Dirichlet process model also generates clusters that share
common characteristics and exhibit distinct geographic patterns — yielding insight into the
homelessness and housing affordability crises in large metropolitan areas on both coasts of the
United States.

1 Introduction

Homeless rates in the United States vary significantly from one community to another. According
to the U.S. Department of Housing and Urban Development (HUD), roughly 1 in 1,250 people
were counted as homeless in Glendale, CA in January 2017, while 1 in 70 people were counted as
homeless in Mendocino County, CA that same month (HUD, 2017). This more than seventeen-fold
increase in the rate of homelessness within the state of California suggests that homelessness is
critically influenced by features of individual communities’. Quantifying the association between
homeless rates and features of a community is practically useful along two dimensions. First, it
sharpens public focus on the social forces related to homelessness — leading to improved monitoring
and intervention opportunities to help the most vulnerable citizens. Second, it provides a set of
measurable objectives to guide public policy.
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A large collection of literature has investigated statistical associations between features of
a community and homelessness (Byrne et al., 2013; Lee et al., 2003; Quigley et al., 2001); how-
ever, existing statistical models for variation in homeless rates alternate between two extreme
assumptions. At one extreme, analyses assume a single global parameter so that the relationship
between homelessness and housing costs, for example, is the same nationwide (see, e.g., Byrne
et al. (2013)). Assuming a single global parameter is rigid, and it precludes the possibility that
local social structures mitigate (or exacerbate) the role that housing costs play in housing vulnera-
bility. At the other extreme, Glynn and Fox (2018) endow each community with a local parameter
in a hierarchical statistical model. Assuming local effects for each community is problematically
flexible, as there is scarce data on the size of the homeless population in each community — leading
to imprecise estimates of model parameters. In the presence of scarce data, there is a trade-off
between model flexibility and the precision of estimates for model parameters.

Between these extremes of model rigidity and flexibility exists a middle ground where clusters
of similar communities share model parameters. This modeling strategy has both statistical and
applied advantages. From a statistical perspective, pooling information across similar communities
provides sharper estimation of the association between community-level features and homelessness.
From an applied perspective, identifying clusters of communities is a way to define highly-relevant
peer groups for development and evaluation of policy interventions.

In this paper, we have to primary objectives:

(O1) Flexibly estimate the relationship between community features and homeless
rates to identify points where structural changes in the relationship occur; and

(O2) Identify clusters of communities where homeless rates exhibit common patterns
of variation.

To achieve these goals, we develop a Dirichlet process (Ferguson, 1973) mixture model of homeless
rates that partitions communities into clusters where the relationship between rates of homeless-
ness and features of communities is common. Homeless rates are modeled as the unobserved
probability of homelessness in a Bayesian logistic regression. Building on Glynn and Fox (2018),
a distinction is made between the counted and total number of homeless, and sampling vari-
ability in the homeless counts and uncertainty in the size of the total homeless population flow
through to the model for the homeless rate. Three important aspects of our model are (i) the
number of clusters; (ii) cluster membership; and (iii) the relationship between community features
and homelessness within clusters are all jointly estimated as part of the inference procedure. A
Markov chain Monte Carlo algorithm is developed that seamlessly combines the Polya-Gamma
data augmentation strategy of Polson et al. (2013) with Neal’s Algorithm 2 for Dirichlet process
mixtures (Neal, 2000) and a forward filtering backward sampling (FFBS) algorithm to account for
community-specific trends. An important consequence of our Bayesian nonparametric model for
homeless counts is the ability to flexibly estimate increases in homeless rates with locally linear
regressions.

In this study, we focus on three aspects of a community: rental costs, measured by Zillow’s
Rent Index (ZRI), median household income, and the percent of residents living in extreme
poverty. While the cost of housing is consistently identified as a predictor of homelessness both
across (Byrne et al., 2013) and within (Glynn and Fox, 2018) communities, housing costs in
absolute dollar amounts are an incomplete measure of housing affordability. The combination



of housing costs and household income — specifically, the percent of income spent on housing
costs — more completely reflects the relative affordability of housing across communities, taking
into account that high rents in big cities are also typically supported by relatively higher salaries
whereas lower rents in rural areas may still represent a significant portion of one’s income. By
focusing on median housing costs as a share of median income, we are able to more directly
compare housing affordability in communities with different housing markets and economies.
While median housing affordability measures account for varying housing markets and income
levels, they do not reflect the size of the population in a community whose income is inadequate
to meet the cost of housing. To control for the size of the population in each community that is
most prone to homelessness, we also include the percent of a community living in extreme poverty
in our statistical analysis.

Our analysis identifies a structural change in homeless rates when housing costs in a commu-
nity reach 32% of median income. After housing costs exceed 32% of median income, the expected
homeless rate in a community increases sharply. We also find three dominant modes of variation
in homeless rates, with 381 of 386 total communities in our analysis falling into one of three
clusters: communities in the first cluster — primarily located in the midwest, mid-Atlantic, and
southeast — tend to have very low homeless rates and modest housing costs; communities in the
second cluster — including most of New England, Florida, the mountain west and central United
States — have intermediate homeless rates and housing costs on par with the national average;
communities in cluster three, which span much of the west coast and include large metropolitan
areas on the east coast, have very high homeless rates and high costs of housing.

The paper proceeds as follows: in Section 2, we describe the data used in our analysis; in
Section 3, we present our Dirichlet process mixture model of homeless populations and describe
choices for prior distributions; in Section 4, we detail our Markov chain Monte Carlo inference
procedure; in Section 5, we present localized posterior predictive distributions for the relationship
between homeless rates and community features and identify clusters of CoCs sharing similar
associations; in Section 6, we conclude with a discussion of our findings and how the clusters of
communities can be effectively utilized for policy prescriptions.

2 Data

The data used in our analysis spans the years 2011 to 2017 and comes from three sources: HUD,
the American Community Survey (ACS), and the real estate analytics firm Zillow.

Each year, HUD produces a nationwide estimate of the number of people experiencing home-
lessness on a single night. The national estimate is based on local enumeration efforts called
point-in-time (PIT) counts. While the PIT counts are conducted in January, the data is typically
released the following November. At the local level, counts are conducted in roughly 400? contin-
uums of care (CoCs), geographic units that coordinate support services for homeless and whose
boundaries are typically coterminous with a single city, a single county, or a group of counties. In
2017, PIT estimates were produced for 399 CoCs across all 50 states, the District of Columbia,
Puerto Rico, the U.S. Virgin Islands, and Guam.

To assess variation in homeless rates, it is essential to account for variation in the size of

2The exact number of CoCs varies from year to year due to the creation or dissolution of CoCs or the merger of
two or more existing CoCs. In 2007, there were 461 CoCs; in 2017 there were 399.



CoCs; however, the total population of a CoC is not reported by HUD. Discrepancies between
geographic boundaries of CoCs and boundaries of geographic units for which total population
estimates are made available by the U.S. Census Bureau mean that total population estimates for
some CoCs are not readily available. To overcome this mismatch, we develop a crosswalk between
HUD CoCs — the most granular geographic unit for which homeless data is available nationally
— and census tracts. To match census tracts with CoCs, we utilize a process conceptually similar
to that described by Byrne et al. (2013). Specifically, we use geospatial data from HUD on the
boundaries of each CoC and compute the geographic centroid of each census tract. If the tract
centroid falls within the boundaries of a CoC, we match the whole tract to the CoC. Based on
this assignment of tracts to CoCs and tract-level ACS 5-year population estimates, we construct
approximate total population measures for each CoC from 2011-2016. For example, to construct
the CoC total populations in 2011, we use the 2007-2011 ACS 5-year estimates. These CoC total
population estimates and PIT counts facilitate comparisons of homeless rates across communities
of various sizes. We have made the code used to conduct the geospatial matching and construct
the CoC total population estimates publicly available on the GitHub page of one of the authors
(Byrne, 2018).

We focus our analysis on three particular features of a community: rental costs, measured by
Zillow’s rent index (ZRI), median household income, and the percent of residents living in extreme
poverty. Median household income data and the percent of residents living in extreme poverty are
also reported in ACS. We weight tract-level measures of median income and extreme poverty by
the tract-level populations and aggregate to construct CoC-level measures of median household
income and rates of extreme poverty. To measure rental costs, we follow Glynn and Fox (2018)
and utilize a custom-computed variant of ZRI. The critical difference in the rental data for this
analysis and that used by Glynn and Fox (2018) is that in the present study, Zillow computed a
rent index for each CoC based on geospatial data provided by HUD. The rent index methodology
is identical to Zillow’s existing ZRI methodology, but it is brought to the non-standard CoC
geographies — providing a measure of rent not previously available to researchers utilizing PIT
count data. Table 1 presents a snapshot of the data for the New York City CoC (NY-600).

Count Population ZRI ($) Income ($) Poverty (%)

2011 51,123 7,944,958 1,738.62  54,974.00 8.60
2012 56,672 8,009,322 1,768.21  55,510.05 8.82
2013 64,060 8,074,863 1,843.62  56,036.71 9.03
2014 67,810 8,159,782 2,010.27  57,029.83 9.08
2015 75,323 8,231,358 2,175.81  57,758.77 8.95
2016 73,523 8,268,601 2,322.79  59,552.74 8.79
2017 76,501 8,305,844 2,469.76  61,346.72 8.63

Table 1: Homeless count and community features of New York City CoC (NY-600), including all
five burroughs of New York City.

While countless features of a community are potentially associated with homelessness — in-
cluding apartment vacancy rates, unemployment rates, demographics, etc. — most (if not all) are
highly correlated with the features that we have included in our analysis: cost of rental housing,
median income, and rates of extreme poverty. Including many highly correlated predictors in a



statistical model presents estimation problems that are avoided by focusing on a few important
predictive features. Figure 1 demonstrates that as both ZRI (as a percentage of median income)
and the rate of extreme poverty increase, so too does the estimated log odds of homelessness. In
Figure la, observe that the data strands for the Cook County CoC (IL-511) and the Cambridge
(MA) CoC exhibit very different associations with ZRI / Median Income. A single linear model is
too rigid to realistically model the disparate associations; however, the CoC-level data sequences
are only 7 years long, and inference on local model parameters characterizing the individual re-
lationships visualized in Figure la may not be robust. To overcome this data scarcity at the
CoC-level and facilitate robust inference, we pool observations in a cluster of CoCs sharing a
similar relationship. The GAM-smoothings of the log odds ratios in Figures 1a and 1b illustrate
nonlinear increases in homeless rates associated with increases in ZRI/median income and rates
of extreme poverty.

[7}] w0
7] 0
s 5 2 s
a — n -
7] 0
cu o
g7 g
s vs ‘5 N
(2] ["2]
E 3
B 9 2 -9
o o))
<)
S S
11 | | . | . -11 : v . !
o o o o o w o w o
o~ (3] <t w w0 - - ™~
ZRI as Percent of Median Income Rate of Extreme Poverty (%)
coc + IL-511 * MA-509 o+ |L-511 « MA-509
(a) Affordability (b) Poverty

Figure 1: Imputed log odds of homelessness plotted against ZRI as a percentage of income (left)
and rates of extreme poverty (right). The highlighted data are from the Cambridge (MA) CoC
and the Cook County (IL) CoC, and the line segments through the MA-509 and IL-511 highlighted
data correspond to ordinary least squares model fits. The solid lines spanning the full range of the
x-axes in both figures present Generalized Additive Model (GAM)-smoothings of the CoC-level
log odds.

3 A Bayesian nonparametric model for homeless counts

The novel modeling contribution of the study is a mixture model for latent homeless rates based
on the Dirichlet process prior (Ferguson, 1973). As atoms from the Dirichlet process are replicated
across CoCs, the infinite mixture model forms clusters of CoCs that share similar associations
between homeless rates and CoC-level predictors. Pooling data at the cluster level facilitates
sharper inference of shared parameters than would be possible if each CoC were endowed with
its own parameter. The information-borrowing strategy allows us to overcome the limited sample



size of each CoC, which has only seven years of PIT data, and it further provides a well-defined
peer group of CoCs based on the shared pattern of variation in homeless rates. While each
CoC’s homeless rate — conditional on its cluster assignment — is a linear regression in the latent
log odds space, integrating over cluster assignments locally in predictor space yields a localized
posterior predictive distribution that flexibly models the form of association between homeless
rates and CoC-predictors — providing a model-based strategy for inferring potential inflection
points in homeless rates. Before introducing the modeling innovation in section 3.2, we discuss
our strategy for modeling the unobserved homeless rate in a community given the HUD-reported
PIT counts and our noisy estimates of CoC-level total populations in Section 3.1.

3.1 Modeling homeless rates as latent variables

Modeling homeless rates requires some care, as several data quality challenges prevent simply
dividing PIT counts in a given year by the total CoC population. Hopper et al. (2008) provide
evidence that street counts do not fully reflect the size of the homeless population in a community.
This systematic undercount of homeless populations artificially lowers homeless rates and neces-
sitates modeling the mechanism by which individuals are excluded from PIT counts. Uncertainty
in the size of the homeless population is one aspect of the data quality challenge. Uncertainty in
the total population of each CoC is a second aspect. While we observe the ACS 5-year estimates
of total population at the tract level, tract populations are aggregated to form a noisy estimate
at the CoC level. At both the tract and CoC level, the total population is not exactly known.
Modeling noise in the numerator and denominator of a rate calculation allows for a more complete
accounting of uncertainty in homeless rates.

To address these data quality challenges, we adopt the modeling framework proposed by
Glynn and Fox (2018) and treat unobserved homeless rates as parameters in a hierarchical
Bayesian statistical model. The hierarchical model has three levels: (i) a component model for
the total population of CoC i in year ¢, denoted Nj;; (ii) a component model for the unobserved
total homeless population, denoted H;;; and (iii) a component model for the counted number
of homeless, denoted Cj;. In this hierarchical model, uncertainty in N;; and H;; propagate to
estimates of the latent homeless rate, denoted p;;. We summarize critical components of the
Glynn and Fox (2018) framework here.

Total Population. The total population of CoC ¢ in year t is modeled with a Poisson
random variable,

Ni ~ Poisson(Aiy). (1)

The expected total population in year ¢, A;;, is further modeled over time in a way that admits
a forward filtering backward sampling algorithm to infer A;; from the ACS 5-year estimates from
2011-2017. Sampling from the posterior predictive distribution p(N;;|N; 1.1) generates samples of
the CoC’s population that are informed by the ACS data and provides a mechanism for propagat-
ing uncertainty in the CoC populations to predictions about the underlying size of the homeless
population.

Total homeless population. The total number of homeless H;; is a small subpopulation
of the CoC’s total population. To model the size of the homeless subpopulation conditional on
the total population of the CoC, a binomial thinning step is employed,

H;; ~ Binomial(N;+,pi+t). @)



While H;; is modeled as a latent variable given N;;, it is important to note that H;; itself is
not directly observed. We treat H;; as missing data and impute it as part of our model fitting
procedure. The homeless rate, p;, is the focus of Section 3.2.

Homeless count. The counted number of homeless, a quantity distinctly less than H;, is
modeled as a conditionally binomial random variable

Cit ~ Binomial (H; ¢, m; ). (3)

The parameter m;; € [0,1] is the probability that a person who is homeless will be counted
as homeless. Refer to Glynn and Fox (2018) for a full discussion of prior choices for m;; ~
Beta(a;, b; ) and their consequences for inference on changes in homeless rates. As H;; is not
observed, it is not possible to learn m; ;. We view m; ; as a nuisance parameter and integrate over
it so that the marginal model C;;|H;; is beta-binomial distributed.

These three model components are coupled with a two stage binomial thinning. In the first
stage (equation 2), the total CoC population is reduced to the total number of homeless, a step
that depends critically on the homeless rate p; ;. In the second stage (equation 3), the unobserved
total number of homeless is reduced to the counted number of homeless, C; ;, a step that depends
on one’s prior beliefs about count accuracy. We adopt the priors utilized by Glynn and Fox (2018)
to carry out our analysis.

3.2 Dirichlet process mixture model for 1,

The novel modeling contribution of this paper is a Bayesian nonparametric model for p;; based
on the Dirichlet process prior of Ferguson (1973). As outlined in 2, we model the total number
of homeless H;; with a Bayesian logistic regression. Here, we transform p;; to the real line with
a logit transformation

it = log (1%;) = F] Biy + X] i + €i, €ie ~ N (0, 012#1-)‘ (4)
1,
The log odds of homelessness in CoC ¢ in year ¢, denoted v 4, is modeled as the composition of a
dynamic latent factor Fi/,tﬁiﬂf and the regression X{’tqﬁi. We address each component in turn.
The p x 1 vector X;; is a set of community-level predictors and ¢; is a p x 1 vector of
regression coefficients. To induce shared regression coefficients in groups of CoCs, we model ¢;
with a discrete random measure G, where G itself is drawn from a Dirichlet process prior.

¢i ~ G (5)
G ~ DP(aGy) (6)

The Dirichlet process prior for G places prior probability on a countable sequence of p-dimensional
vectors (¢, ¢ ¢B) ), each with probability mass (w),w® w®) .. ). The atoms of G,
denoted ¢(l), are drawn from base measure Gy with support on RP, and the weights w® are
recursively constructed utilizing the stick-breaking representation of Sethuraman (1994). The
weights w) = ~; Hg_:ll(l — ;) depend on ~; (for j =1,...), which are drawn independently from
a Beta(1, ) distribution. The discrete probability measure for ¢; is then > %, w(l)6¢<z). One
consequence of the discrete probability measure G for the set of all {¢; 38? is that multiple CoCs

1=



may share the same atom ¢, inducing a partition of CoCs into clusters that share the same
relationship between v; ; and X ;.

Though the form of X;; may be customized by the modeler, in this study we include a leading
one in X;; (e.g., Xj; = [1 ]/) The leading one results in a shared cluster-level intercept —
or expected rate of homelessness — that is unrelated to housing costs, economic variables, and
poverty. One way of interpreting the cluster-level intercept is as the expected rate of chronic
homelessness in a particular group of communities.

The cluster-level regression coefficient ¢; models variation in v;; associated with predictors
Xit; however, there are many features of a community that are either not directly observed
or excluded from X;;. To account for these unobserved local features, we include a CoC-level
dynamic latent factor 3; ; — allowing for small departures from the cluster-level regression — that
may be due to local policies, cultural attitudes toward homelessness, affordable housing initiatives,
and many other difficult to observe local factors. The f3; ; term reflects whether the environment
in CoC ¢ contributes to or reduces homelessness beyond the level associated with predictors X; ;
in a specific cluster. To account for temporal trends in these latent factors at the CoC-level, we
model f;; with a state-space model

Bit = ABi—1 + wy, wy ~ N (0, Wy). (7)

The dynamic latent factor model in 7 makes two important contributions: first, 5;; provides
a mechanism to include (in aggregate) the unobserved community features that are excluded
from X;;; second, it allows for temporal trends in homeless rates that are not well explained by

11
0 J and

predictors X; ;. The locally linear trend model for 3;; is achieved by choosing A = [
F, = [1 0]

The number of clusters in our Dirichlet process model is significantly impacted by the choice
of innovation variance aii in 4. If the innovation variance is small, the variation of log odds
around particular regression lines is tight, and many clusters are needed to explain variation in
the 386 CoCs. If the innovation variance aii is large, larger deviations in homeless rates from
the regression fit are expected, and fewer clusters are needed. We model each O‘?m with an inverse
gamma (IG) distribution, allowing the data to appropriately inform the innovation variance and

number of clusters.
O'ii ~ IG(ay, by) (8)

A consequence of this model choice for Jii is that conditional on the latent factor 3;; and
¢, the log odds of homelessness p(1;¢|Bi ¢, ¢i) = fooo (Vi el Bit, Pis U?pi )p(aii)daii is t-distributed.
The heavy tails of 1; ¢|5;+, ¢i allow for CoC-specific variation in homeless rates and a regression
model that is robust to outlier homeless counts driven by idiosyncratic local events.

3.3 Prior choices

Prior distributions for (6i70,a,aii) and base measure Gy are chosen by matching the first two
moments of the implied prior distribution at time zero to the empirical distribution for the log
odds of homelessness computed from 2010 data. Since the data used in our analysis begins in
2011, we use data from 2010 to inform priors. The distribution of log odds of homelessness in



2010, denoted 1); 0, is unimodal and symmetric with a mean of —6.24 and a variance of 0.69
(see Figure 2a). The expectation of 1; o — computed by taking the expectation of 4 — is E[¢); ] =
F E[Biol+X; oE[¢:]. We choose E[f; 0] = 0 to encode our prior belief that the expected homeless
rate for a community is the cluster-level contribution from CoC-predictors, E[)io] = X oE[¢i].
The choice of E[¢;] is akin to choosing base measure Gy. We choose G to be a p—dimensional
Gaussian distribution with mean py and variance g. In Section 3.2, we noted that the cluster-level
intercept may be interpreted as the rate of homelessness that is unrelated to community features.
We interpret this as the rate of chronic homelessness in a community and utilize PIT counts from

2010 on chronic homelessness to inform the first element pg = —8.28. Remaining elements of
1o are chosen so that XZ%) u(()Q) +...+ XZ-(%) u(()p ) = (1io — 8.28) receive equal contributions and
u(()Q) =...= u((]p ) = Y0828 \When we include predictors for housing affordability (measured

O XE 4 x®
by ZRI as a share of median income) and the rate of extreme poverty, the predictor vector is
Xzf,t = [1 __ZRL: ExtPovertyi,t}, and the mean of Gy is p = [—8.28 0.061 0.061].

MedianIncome; ¢
With the means of prior distributions chosen so that E[t; o] matches the sample mean in the
2010 data, we follow a similar strategy in choosing prior variances. The objective is to compose
Var(t;,0) from contributions that are consistent with the modeler’s uncertainty in each parameter.
The variance Var(1; ) may be decomposed with an application of the law of total variance,

Var(yio) = EVar(iplBio, ¢i,00,)] + Var(E[iol Bio, ¢i,03,]) 9)
= Elo},] + F{oVar(Bi0)Fio + X{ oVar(¢:) Xio. (10)
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Figure 2: Left: The empirical distribution of log odds of homelessness in 2010, ; 9, and the implied

prior distribution for 1; 9. Right: the prior and posterior distributions for gbZ@), the parameter
associated with housing affordability.

We begin by fixing Var(8;0) = 0.1 to allow for meaningful systematic (as opposed to id-
iosyncratic) deviations in a community’s homeless rate from the homeless rate of the cluster. The



variance of Gy, denoted Xy is chosen to encode the belief that our most uncertain component
is the intercept, the chronic rate of homelessness. We fix ¥y = diag(0.4,0.0002,0.0002). The
choice of 0.0002 for the variance of coefficients associated with housing affordability and poverty
encodes a strong prior belief that these parameters are positive, but they do not rule out a neg-
ative association, as illustrated in Figure 2b, where the posterior for the housing affordability
coefficient concentrates on negative values in one of the clusters. The remaining variance com-
ponent is aii ~ IG(3,0.1), which puts a diffuse prior on observational noise in homeless rates —
encoding a belief that in some CoCs, the count process is robust and stable from one year to the
next, while in other CoCs, the observed count fluctuates significantly due to random local factors
such as weather, changes in count methodology, volunteer turnout, and funding levels. We follow
Escobar and West (1995) in modeling the concentration parameter of the Dirichlet process with
the conventional a ~ Ga(1,1). We note that prior choices for Var(8;), a and 012/%_ significantly
impact the number of clusters. By choosing relatively diffuse priors for each, we give the data a
significant role in informing the number of clusters. The marginal prior for ;o is illustrated in
Figure 2a. Observe that the induced prior for v; ¢ is slightly more diffuse than the empirical dis-
tribution of log odds in 2010, providing for the possibility that homeless rates in CoCs nationwide
are actually more variable than was observed in 2010 alone.

4 Markov Chain Monte Carlo

Our objective is to sample from the posterior distribution

p(P1:K, Z1:386, B1:386,1:7| N1:25. 1.7, C1:25 1:7), (11)

where Z; = k is the cluster assignment variable that includes CoC 7 in the group sharing regression
coefficient ¢j. Recall that v;; is a parameter in the Bayesian logistic regression that depends on
H;;, the latent variable for the size of the total homeless population (see 2). Our computational
strategy is to condition on observations N;; and C; ; while numerically integrating latent variables
H;; and 1);; from the joint posterior

P(o1:K, Z1:386, B1:386,1:7| N1:25,1:7, C1:25,1:7)

= /p(¢1:386,1:T, Hi.386,1.75 $1:K 5 Z1:3865 51:386,1:7> | N1:25,1:7, C1:25,1:7)dH1:386,1:7d11:386,1:7-

The computational scheme is a parameter expanded Gibbs sampler: to integrate over v;;
in the logistic model, we utilize Pélya-Gamma data augmentation (Polson et al., 2013); to infer
latent factor sequence S; 1.7, we rely on forward filtering and backward sampling (FFBS, Carter
and Kohn (1994); Fruhwirth-Schnatter (1994)); to make inference on ¢ and Z, we use Neal’s
algorithm 2 (Neal, 2000). We run our MCMC algorithm for 50,000 iterations and discard the first
25,000 as a burn-in. The MCMC simulation took approximately 12 hours to run on a MacBook
Pro.

4.1 Sampling steps

There are eight different sampling steps required in the MCMC algorithm. Step 1 is for latent
variable H;;. Sampling H;; depends on prior beliefs about count accuracy ;¢ ~ Beta(a;t, bit)

10



in 3. We choose a;; and b;; by specifying the prior mean (E[m;¢]) and variance (Var(m;¢)), which
implies that

Qi = E[Tri,t] ((1 _gc[z;i(’izi[m’t] — 1> , (12)
. a
bit = Vg[;(:];) (E[;;] + ai,t) : (13)

We follow Glynn and Fox (2018) and specify prior mean E[m; ;] and Var(m; ;) based on the
proportion of the homeless population in each CoC that is unsheltered in 2010 and the assumption
that 95% of sheltered homeless are counted while 60% of unsheltered homeless are counted.

Step 2 samples a Pélya-Gamma auxiliary variable ¢ (Polson et al., 2013). Conditional on
Gi,t, we sample the log odds of homelessness v; ; in Step 3. Given the sequence of log odds draws
;1.7 and draws from the Dirichlet process ¢, and Z; = k, we sample the latent factor sequence
Bi1.r utilizing FFBS. Step 5 and Step 6 are from Neal’s Algorithm 2, which is closely related to
algorithms developed by Bush and MacEachern (1996) and West et al. (1994). Step 7 updates the
innovation variance 012/)1_ by sampling from an inverse gamma full conditional distribution. Step 8
updates the Dirichlet process concentration parameter o by sampling from a mixture of Gamma
distributions.

To simplify presentation of the algorithm, we consider the case where N;; is assumed to
be the actual CoC population size. A straightforward modification of this algorithm allows for
sampling a synthetic population N7, from the posterior predictive distribution p(N;ft|Ni,1;T) to
propagate uncertainty in CoC-level populations to estimates of other model parameters. See
MCMC sampling steps 1-5 (and prior choices therein) in Section 5 of Glynn and Fox (2018) for
a detailed procedure to sample from p(N/|N; 1.7). Modify the algorithm below by replacing N; ;
with the synthetic randomly sampled population N},

1. For each i,t, sample the total number of people experiencing homelessness in metro ¢ and

year t, H;4, from a discrete distribution with support [C;, N;]. The probability mass for
T'(H;+1) T(Cye+a; )T (H; s —Ci 1 +bi t)

each possible value is p(H; ¢|Ni ¢, Cit, Pits Qit, bit)

T(aie+bie) (Nig\, Hit \(Nii—Hiy)
D(ai,e)T(bs,e) (Hzt) it (1 —=pie)t ™ T

x T(Ci,t+1)T(H;i,:—Ci t+1) T(Hjt+a;,+bie)

2. For each 1i,t, sample the auxiliary Pélya-Gamma random variates to augment the total
homeless variable, (; | Ni ¢, it ~ PG(Niyt, ¥iy).

3. For each i and ¢, sample the normally distributed v ¢|C; ¢, Nit, Hit, Zi = k, ¢, U?pi.

4. For each i, sample 5 1.7|¢i 1.7, Zi =k, ¢x, aii from a multivariate normal distribution using
standard FFBS computations.

5. For each i, sample Z;|¢, aii, Bi1.7 following algorithm 2 in Neal (2000).

6. For each k, sample ¢y|Z1.386,1:386,1:7, 51:386,1:T's {ai_}?ﬁﬁl from a multivariate normal dis-
tribution.

7. For each i, sample O'ii‘Zi =k, i, Bi1.7, Yi.7 from an inverse gamma distribution.

8. Sample a|p1.x from a mixture of Gamma distributions as in Escobar and West (1995).
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4.2 Approximate posterior predictive distributions

Inferred relationships between homeless rates and CoC-predictors are best summarized by the
posterior predictive distribution of the homeless rate in a new community with predictor-vector
X,. Define 1, = X.¢. to be the contribution of X, to the log odds of homelessness. The
model implied (5,6) posterior predictive distribution for ¢, is a mixture of base measure Gy and
the discrete distribution for ¢ learned from the data, which is represented by the Blackwell-
MacQueen urn scheme _%e=Go + ﬁ Zf’iﬁ d4,- Note that the predicted ¢, does not depend
on the predictor vector X,; however, observe in Table 2 that cluster assignments of CoCs clearly
depend on levels of the homeless rate, housing affordability, and extreme poverty. Utilizing the
standard Blackwell-MacQueen urn scheme to predict the homeless rate in a new community
results in unrealistic predictions, as it fails to adequately account for the inferred partition in
predictor space and the local characteristics of the community. In other words, when predicting
the homeless rate in a new community, it is reasonable to rely heavily on posterior draws from
peer communities with similar characteristics. To generate more realistic and local predictions,
we construct an approximate posterior predictive distribution using a localized variant of the
Blackwell-MacQueen urn scheme: the predicted ¢, depends on X, which we denote ¢.(X,). We
fix a window around an element of X, and utilize draws from the nx, CoCs with levels of housing
affordability and extreme poverty, respectively, within the specified window. The index set for
the CoCs local in predictor space is Z = {i : (3t)|X; + — X.| < €}. To examine changes in homeless
rates as a function of X,, we compute the localized posterior predictive distribution

(D4 (X+)|Ch:386,1:7, N1:386,1:75 X) = /p(¢*(X*)|?9,X*)p(ﬁ\01:386,1:T,N1:386,1:T)d?9 (14)

where ¥ = (¢1, ..., P386, ). We draw samples from this approximate posterior predictive distri-
bution with a two step procedure.

1. For the m! MCMC iteration, sample a new gb,(km) (X,) from a modified Blackwell-MacQueen

urn scheme that depends on X, %Go + mzjg 5¢(_m), where Z = {i :
* * j

(Ft)| Xi+ — Xi| < €}, the index set for the nx, CoCs with predictor X;; nearly equal to
X, for at least one t.

2. Construct ¢£m) = X;¢£m) (X,) and transform to the homeless rate, pim) = W
1+e V=
While the conditional distribution of ¥, |Z, = k is linear in predictor space, the marginal dis-
tribution of 1, may exhibit nonlinear associations as a function of CoC-predictor X,. This flexible
functional form allows us to to identify inflection points in the relationship between homeless rates
(p«) and features of a community (X,), a main objective of the analysis.

5 Results

There are three main findings of our study: (i) there is an inflection point when ZRI reaches 32%
of median income — after which the expected homeless rate in a community sharply increases;
(ii) we identify six different clusters of CoC’s that exhibit distinct geographic patterns; and (iii)
unobserved factors in a CoC beyond poverty and housing affordability contribute meaningfully to
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increases (decreases) in homeless rates over time. In Section 5.1, we illustrate the complex non-
linear associations between homeless rates, housing affordability, and extreme poverty. In Section
5.2, we present findings from our cluster analysis and discuss different types of homelessness.
In Section 5.3, we examine the net contribution of additional unobserved factors to the overall
homeless rate — allowing us to identify temporal trends in homeless rates that are not explained
by housing affordability or poverty.

5.1 Inflection points in CoC-predictors

A primary objective of this analysis is to identify break points in community features after which
homeless rates are expected to rapidly increase. Identifying these inflection points can help com-
munities prepare for rapid growth in homeless populations as key metrics of housing affordability
and community-wide poverty cross a tipping point. In Figure 3, we summarize the relationship
between homeless rates and community features with approximate posterior predictive distribu-
tions computed from the modified Blackwell-MacQueen urn scheme outlined in Section 4.2. The
general strategy is to fix one community feature (affordability or poverty) to investigate the ex-
pected homeless rate as a function of the other. In Figure 3a, we predict the homeless rate as
a function of housing affordability (z.) for a new community with 6.64% of residents living in
extreme poverty, the sample average. The predictor vector is X, = [1 Ty 6.64],. For example,
we expect a homeless rate of ~ 0.41% (y-axis) in a community where rental costs consume 40%
(x-axis) of median income and extreme poverty is on par with the national average. The 90% pre-
dictive interval for the homeless rate spans 0.07% on the low end to 0.68% on the high end when
ZRIis 40% of median income. San Diego is an example of a community with these characteristics.
In 2017, the extreme poverty rate in San Diego was 6.26% and ZRI consumed 40.16% of median
income. The estimated homeless rate in San Diego in 2017 was 0.37% — right in the middle of the
predicted range. An important feature of Figure 3a is the widening 90% predictive interval when
ZRI as a percent of income exceeds 40%. Since there are relatively few CoCs with extreme housing
costs, the posterior predictive is informed by less data and the uncertainty interval widens.

Observe that when ZRI as a percent of median income is between 18-32%, the rate of increase
in the expected homeless rate is not nearly as sharp as the rate of increase after 32%. In fact,
the expected homeless rate is approximately piecewise linear, which is illustrated by the three
dashed lines superimposed on the graph: the first line is flat over the range 18-22%; the second
line increases from 22-32%; and the third line, beginning at 32%, has the steepest slope of all. The
cluster assignments of the Dirichlet process model allow for changes in the structural relationship
between housing affordability and homelessness, and the breakpoint in the expected homeless rate
when ZRI reaches 32% of median income is learned from the data. The estimated 32% threshold is
roughly consistent with the widely debated definition of affordable housing used by HUD and the
Census Bureau: when housing costs exceed 30% of income, a family is defined as cost burdened
(HUD, 2018). When families become acutely cost burdened, we find that the expected homeless
rate sharply increases. We construct the predictive distribution in Figure 3a until ZRI reaches
50% of median income. We truncate at 50% because only 9 CoC’s have higher relative housing
costs, a number we feel is inadequate for robust estimation of the predictive distribution. In order
to borrow information locally in X, we choose € = 3% (Step 1 in Section 4.1), which provides a
rolling window of the communities included in the computation and results in local smoothing of
the expected homeless rate in Figure 3a.
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Figure 3: Left: The approximate posterior predictive distribution for homeless rates as
ZRI/median income increases. Right: the approximate posterior predictive distribution for home-
less rates as rates of extreme poverty increase. The shaded intervals illustrate the 90% predictive
uncertainty intervals.

In Figure 3b, we predict the homeless rate as a function of extreme poverty for a community
where ZRI is 28% of income, the sample average. The predictor vector is X, = [1 28 :c*}/. We
interpret Figure 3b as following: the expected homeless rate is 0.24% (y-axis) in a community
where 8% (x-axis) of the population lives in extreme poverty and relative housing costs are on
par with the national average. The 90% predictive interval ranges from 0.084% to 0.67%. In
Albuquerque, NM (7.75% in extreme poverty, ZRI is 28.7% of median income) we estimate that
in 2017 the homeless rate was 0.32% — again within the predicted range. Observe that the
predictive interval also widens in Figure 3b as extreme poverty increases since there are few CoCs
with very high extreme poverty rates. We note two separate breakpoints in the expected homeless
rate at 8% and 10% extreme poverty in Figure 3b. When the extreme poverty rate exceeds 8%,
the rate of increase sharpens. At 10%, the expected homeless rate reaches a plateau. Although
the expected homeless rate flattens after 10%, the upper edge of the predictive interval continues
to increase.

5.2 Clusters of CoCs

In our Dirichlet process mixture model of homeless rates, the number of clusters is learned from
the data. In every iteration of our MCMC algorithm, both the number of clusters and the cluster
membership of each CoC are sampled. Label switching among clusters and the varying dimension
of the parameter space make direct inference on any one cluster difficult. For these reasons, we
summarize inference on the relationship between community features and homeless rates with
approximate posterior predictive distributions as in Section 5.1; however, there is significant
interest from a policy perspective in identifying a group of peer CoCs likely to benefit from the
same type of intervention. To form these peer groups, we identify frequent co-occurences of CoCs
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1 and j in the same cluster and compute a pairwise similarity matrix from MCMC samples of
Z; and Z;. Based on the posterior probability of CoCs i and j sharing a cluster, we utilize the
adjusted Rand index of Fritsch and Ickstadt (2009) to partition the set of 386 CoCs.

We find six different clusters; however, most CoCs (381 of 386) are assigned to clusters
one, two, and three. Observe in Table 2 that of the first three clusters, cluster one has, on
average, the lowest homeless rate (0.08%), the most affordable housing (27.04%) and the lowest
rate of extreme poverty (5.98%). Of clusters one through three, cluster three has, on average,
the highest homeless rate (0.60%), the least affordable housing (38.44%), and the highest rate
of extreme poverty (7.47%). The largest cluster — both by number of CoCs and by population
— is cluster two, which is home to 47% of the U.S. population. While only 15.1% of the total
U.S. population lives in cluster three, it contains 47.3% of the homeless included in the 2017 PIT
counts.

Cluster 1 2 3 4 5 6
Size (# CoCs) 138 189 54 1 3 1
Share of Total Pop (%) 36.60 47.60 15.10 0.10 0.60 0.10
Share of PIT Count (%) 14.00 38.20 47.30  0.10 0.10 0.20
Homeless Rate (%) 0.08 0.19 0.60 0.42 0.03 0.53
)
)
)

-8.91 -2.32 2854 3281 -29.49 183.37
27.04 2949 38.44 3094 2578 47.11
5.98 6.80 7.47  3.96 7.96 3.26

=
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Table 2: Cluster characteristics: The Share of Total Pop (%) and Share of PIT Count (%) are
the percentage of the total US population and HUD counted number of homeless in each cluster
in 2017. Homeless Rate (%) is the mean estimated homeless rate. Relative ZRI (%) is the 2017
mean ZRI in the cluster as a percentage above (below) the national average. Affordability is the
cluster-level mean of ZRI as a percentage of median income, and poverty is the cluster-level mean
of the extreme poverty rate.

Although the model contains no specific mechanism for spatial patterns in homeless rates,
there is clear spatial structure in our cluster assignments. Observe that cluster one is common
in the Midwest, Mid-Atlantic, and parts of the southeast, where the ZRI is 8.91% below the
national average. Most of New England, Florida, the mountain west and central United States
are assigned to cluster two, where housing costs are on par with the national average — only
falling 2.32% below the national average in ZRI. Cluster three occupies much of the west coast
— including San Francisco, Portland (OR), and Seattle — as well as eastern metropolitan areas in
Boston, New York City, Washington, D.C., and Atlanta. The communities in cluster three, with
ZRI at 38% of median income on average, are well above the break point of 32% identified in
Section 5.1. Figure 4 is a data-driven confirmation of observations made by homeless coordinators
and policy makers around the country: while homeless counts are generally falling in most parts of
the United States, there are pockets on both coast where states of emergency have been declared
to combat homeless crises.

Clusters four through six correspond to CoCs that are relatively unique. The sole mem-
ber of cluster four is El Dorado County CoC, which is unique because it has a high homeless
rate but modest housing costs and low poverty rates (see Table 2). Cluster five has three mem-
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Figure 4: Map of clusters in the continental United States (left) and the northeast corridor (right)
from Washington, D.C. to Boston, MA. Clusters exhibit strong spatial structure.

bers in the rural south — the Southeast Arkansas, Houma-Terrebonne/Thibodaux (Louisiana),
and Central Tennessee CoCs (see Figure 4). In these communities, the average homeless rate
is very low (0.03%) considering the high rate of extreme poverty (7.96%). The sole member
of cluster six is the Marin County CoC in the San Francisco Bay area, which stands out for
its particularly strong association between the homeless rate and worsening housing affordabil-
ity. Cluster assignments for the 386 CoCs included in this analysis may be downloaded from
https://github.com/G-Lynn/Inflection/.

5.3 CoC-level latent factors

There are many dimensions of a community. Poverty and housing affordability, while important
features of a CoC, may not adequately explain variation in homeless rates — particularly in the
presence of policy interventions aimed at reducing homelessness. To account for the many unob-
served contributors to homelessness in a community, we include community-level dynamic latent
factors B; 1.7 in our statistical model. We interpret 3; +|C1.386,1:7, N1:386,1:7, as the deviation of the
homeless rate in CoC ¢ from the rate expected of CoCs with similar features in the same cluster.

The Atlanta Continuum of Care provides an illustrative example of the role that latent
factors play in our analysis. Atlanta, a member of cluster three in Section 5.2, has a particularly
high homeless rate (0.93%) for a CoC with modest rents (approximately 30% of median income).
Relative to peer CoCs in cluster three with similar housing costs, the homelessness rate in Atlanta
is higher than expected (see Figure 5a). While the high homeless rate in Atlanta is partly explained
by the fact that 12% of the population lives in extreme poverty, poverty and housing costs are an
incomplete accounting of the factors at play. Observe in Figure 5a that the estimated homeless
rates in 2011-2017 (squares) are significantly higher than the homeless rates predicted by housing
affordability and extreme poverty alone (diamonds). The underprediction indicates that other
factors are contributing to homelessness, which we model with the latent factor /3;;. Since latent
factors in Atlanta are adding to the homeless rate beyond the rate expected of peers in cluster
three with similar features, the posterior distribution for f; 7|Ci.386,1.7, N1:386,1:7 concentrates
on positive values (Figure 5b). We interpret Figure 5b as the percent increase in the predicted
homeless rate from a model that includes 3;; compared to the predicted rate when 3;; = 0,
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Figure 5: Atlanta Continuum of Care (GA-500). Left: Estimated homeless rate (squares) in
Atlanta, the model fit for the homeless rate excluding latent factors (diamonds), and the homeless
rates of other CoCs in cluster three (circles). Middle: Contribution of latent factors in Atlanta to
homeless rate from 2011-2017. Right: Components of the 2017 homeless rate.
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Figure 5b also helps explain why the homeless rate in Atlanta has fallen over the years 2011 to
2017, despite the fact that housing affordability has deteriorated from 27% of income in 2011 to
34% in 2017. The important takeaway is that some combination of factors in Atlanta beyond
housing affordability and poverty are contributing to this lowered homeless rate, and we estimate
this net factor for each CoC with the the posterior 3;:|Ci.386,1.:7, Ni:386,1.7. The latent factor
distribution over time provides a mechanism to evaluate the CoC’s changing environment for
homelessness — including policy interventions.

In Figure 5c, we examine the contribution of each element in X;; to the predicted homeless

expressed mathematically as 100 x (1 — ) The negative trend observed in

rate with a similar strategy. Denote the j** element of vectors Xt and ¢; as Xi(ﬁ) and QSZ(-j ). We

define the baseline (chronic) homeless rate in a CoC as the rate predicted by the

1
Ltexp{—o{"}’
shared cluster intercept alone. The baseline rate presented in Figure 5c is the percentage of the

1+9XP{—5i,t—X{,t¢i}
1+exp{—q§§1>} >
In Figure 5c, observe that the expected baseline homeless rate associated with the cluster intercept
is 39% of Atlanta’s predicted homeless rate in 2017. The contribution of housing affordability (ex-
treme poverty) is quantified as the percent change in the predicted homeless rate of the full model
compared to a model that excludes housing affordability (extreme poverty). The percent change
Ltexp{—B;1—X] ,¢i} I
Thexp{ B XL, ot X000} )
Atlanta in 2017, adding housing affordability to the model only increases the predicted homeless
rate by an expected 2.5%. On the other hand, adding the rate of extreme poverty to the model
increases the predicted homeless rate by an expected 43%. Including latent factors increases the
predicted homeless rate by an expected 28.5%. While these contributions do not sum to 100%,
they do indicate the magnitude of the relative contribution associated with each factor.
The posterior distributions for each component presented in Figure 5¢ provide a tool for HUD

predicted homeless rate corresponding to the cluster intercept alone, 100 x <

in the predicted homeless rate for predictor j is then 100 x { 1 —
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and individual CoCs to investigate the largest factors related to their homeless rate. For each
CoC, it is possible to construct a version of Figure 5b to (i) establish a baseline homeless rate and
(ii) examine the magnitude of increases associated with each of housing affordability, poverty, and
latent factors. It is possible to focus policy interventions on mitigating the factors most pertinent
to an individual CoC.

6 Discussion

In this paper, we present a Bayesian nonparametric model of community-level homeless rates.
The Dirichlet process model shares information across CoCs where homeless rates are similarly
related to features of a community, and we utilize an approximate posterior predictive distribution
to identify structural changes in homeless rates as a function of housing affordability and extreme
poverty. A main finding of the analysis is that the expected homeless rate in a community sharply
increases once ZRI exceeds 32% of the median income — a finding that closely matches the federal
definition of affordable housing (HUD, 2018). We identify three dominant clusters of CoCs that
exhibit common relationships between homelessness and community features. Among the three
main clusters, the lowest homeless rate, most affordable housing, and lowest extreme poverty rate
are found in cluster one. Cluster three communities have, on average, the highest homeless rate,
the least affordable housing, and the most poverty.

Our findings extend prior research that has examined the overall relationship between community-
level factors and homelessness in an important way. By identifying inflection points in the rela-
tionship between homelessness and both housing affordability (as measured by the rent/income
ratio) and rate of extreme poverty, we show that these relationships follow a unique functional
form. This stands in contrast to prior studies that have almost exclusively assumed the rela-
tionship between such factors and homelessness to be linear. Our relaxation of this assumption
reveals important policy-relevant findings. For example, we find that maintaining a rent/income
ratio less than 32% may be an important target for communities in order to avoid sharp increases
in homelessness.

The study also provides new insight into geographic patterns of homelessness in the United
States. A relatively small number of cities, but with significantly large populations (cluster 3),
are experiencing surges in homelessness related to very high housing costs and extreme poverty.
The average housing affordability metric is higher in cluster three (38.44%) than the 32% break
point we identify — which partly explains rapid growth in the homeless populations of many of
these CoCs. Communities in clusters one and two are not nearly as cost burdened — with average
housing affordability measures of 27% and 29.5%, respectively — and the majority of the United
States is less sensitive to increases in housing costs than those 54 communities in cluster 3. This
may explain why, despite increased homelessness in cluster 3 cities like Los Angeles, New York,
and Seattle, the nation has been measuring a steady net decline in homelessness since the recession
of 2008.

The motivation for prior research on community-level determinants of homelessness has been
that factors identified as key drivers of higher (or lower) rates of homelessness can subsequently
be used by communities as policy levers to be pulled in their efforts to address homelessness.
However, prior research in this vein operated under the implicit assumption that pulling the same
levers with the same strength and in the same direction will have an identical effect regardless of
the community in question. Our findings suggest that such an assumption is likely to be incorrect,
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and that communities would be wise to take a more nuanced approach in how they contend with
structural factors in seeking to reduce homelessness. More concretely, our identification of six
clusters of communities based on rental costs, household income, and the rate of extreme poverty
points to the potential need for at least six distinct approaches for offsetting the respective impact
of these factors on homelessness in a community. Our estimation of community-level latent
factors adds even more nuance that might influence policy strategies. Comparing the relative
contributions of latent factors, housing affordability, extreme poverty, and the cluster baseline to
the overall rate of homelessness in a community can provide additional insight into which policy
levers may be most impactful for individual communities.

A limitation of the current study is our use of the CoC as the primary observational unit.
Many CoCs are geographically large, with Rhode Island, North Dakota, South Dakota, and
Wyoming each representing statewide CoCs. Housing affordability and extreme poverty measures
at the CoC-level may conceal dynamics of local markets, adding to the inference challenge in
some larger CoCs. While we do not know of better nationwide data on homeless populations,
we recognize the challenge of working with PIT counts to investigate the relationship between
homelessness and community features. This research augments but is not a substitute for the
invaluable local knowledge of CoC-coordinators and service organizations in addressing the needs
of homeless populations in individual communities.
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